

St Andrews Institute for Data-Intensive Research http://www.idir.st-andrews.ac.uk

Multiplex cities

Interacting transport networks in metropolitan areas

Simon Dobson (Joint work with Saray Shai, Emanuele Strano, and Marc Barthélemy

simon.dobson@st-andrews.ac.uk http://www.simondobson.org

Complex networks

• Sit at the boundary between order and chaos

• Processes run over the network

Barabasi and Albert. Science **286**. 1999.

- Local rules
- Structure makes results unpredictable in detail, but often with statistical regularities
- This talk
 - The complex behaviour of transport networks

Multiplex networks

- Different networks that are *coupled*
 - Process (or influence) can pass between
 - Can affect the behaviour of processes dramatically
- Rich real-world datasets are increasingly available
 - Simulation and experiment

Buldyrev et alia. Nature 464. 2010.

Multiplex transport networks

- Road *and* light rail
 - (And potentially other networks layered on)
- Effects
 - On commute times?
 - On robustness?
 - On investment?
 - On behaviours?

Datasets

Quickest paths

- Travel speeds, network efficiency
- Speed factor of β makes tube 1/ β faster than street $w(e) = \begin{cases} l(e), & \text{if } i, j \in V_s \\ \beta l(e), & \text{if } i, j \in V_u \\ d_e(i, j) & \text{otherwise.} \end{cases}$ • Speed factor of β
- for shortest paths

- \sim 9.4s for a single source = \sim 35 days for the network
- Decomposes to ~13 hours on 64 cores

This is using Python's networkx library. An alternative library, igraph, may be considerably faster. It's still expensive for large networks, though

Results: interdependence

- λ = fraction of quickest path using the underground A = total area
- Q_{λ} = fraction of quickest paths of length d using the underground

Strano, Shai, Dobson and Barthélemy. Multiplex networks in metropolitan areas: universal features and local effects. Submitted to Nature Scientific Reports.

Results: local outreach – 1

• How far can we get at a given cost?

Fast tube has most effect from the centre

Results: local outreach – 2

• How can a city get and still be commutable?

- The value of investment in fast transportation
- Limit to improvements

Results: betweeness centrality

bc

• Identify the "choke points" as people flow through the network

 $\beta = 0.5$

- Remove inner-city congestion
- Tube "spreads load" more efficiently

Limitations

- Appropriateness of measures
 - Betweeness centrality is all-to-all; commuters don't do this, so need a better travel model
 - More likely to go from suburbs to centre
- Not prohibitively computationally expensive
- Multi-disciplinary, with all that implies
 - Different relationships with computing

Future work

- Make urban planning ideas more formal
 - Local outreach can be given a metric
- Effects of modularity and network structure
 - Non-uniform connectivity
- Couple-in other networks and processes
 - Transport *vs* food supply?
 - Flooding roads or tubes?
 - Other behaviours, *i.e.*, first responders?

