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Introduction

● Sensor-driven systems
● The main (only?) input stream is garbled
● The authors of one famous experiment (Great Duck 

Island, 2002) deemed 30—60% of sensor data faulty 

● How do you program with this level of junk?

● Re-conceptualise sensors as evidence-providers 
rather than data- or value-providers
● Use to confirm/refute model hypotheses
● Learn the distributions being observed
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Sensing should be easy, but...

In theory, there is no difference between 
theory and practice. But, in practice, there is.

Jan L.A. van de Snepscheut
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Why are sensors so bad?

● An inherent uncertainty that can't be 
engineered out of a system
● Physical degradation
● Occlusion and fouling
● Positional uncertainty
● Interference, accidental or deliberate

● Physical issues that give rise to faults in the data
● Change over time, need autonomic management
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Fault types

● Noise in the environment and the electronics
● Point (or wider) spikes
● De-calibration (drift) in space and time

Natural variation plus noise Not likely in your data?

Can we tell here that this is an extended 
fault? Or is it a change of phenomenon?
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The taxonomy of fault detectors

● When the detection takes place ?
● Off-line, during analysis
● On-line, during capture

● Where the detection takes place ?
● Server-side, at the sink or in the cloud
● Front-end, in the network
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The taxonomy of fault detectors

● When the detection takes place ?
● Off-line, during analysis
● On-line, during capture

● Where the detection takes place ?
● Server-side, at the sink or in the cloud
● Front-end, in the network

We claim this 
combination is 
better

This combination 
is most common
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Why?

● Scalable
● Use the resources you have, more or less

● Flexible
● Not every application sends data to the sink
● Those that do can reduce overheads

● Robust
● Alerts as they happen

● Tolerant
● Dataset useful even if some nodes fail

Scientific analysis based around 
a specific set of nodes is fragile 
in the face of node failure
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Approach

● Hypothesise the intended data
● Non-stationary: summary statistics change over time

● Sensor readings confirm or refute the hypothesis
● Add evidence rather than providing data
● Goal of the network is to adapt the model to refect 

the conditions being observed on an on-going basis
● Result is a distribution learned from the data

● Use model correlations to let nodes verify each 
others' readings
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Spatial correlation – 1

● Neighbouring nodes observe the same trend

● Look at the differences between them to learn the 
ways in which the true signal is being convolved 
with noise
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Spatial correlation – 2

● A spatial model
● The synchronised differences are Gaussians

● Sometimes these can be derived from context
● Sensor measurement variance may be known

● In general unknown, but can be learned 

Known hardware 
measurement error
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Two inference problems 
● Verifier node selection

● Whether a spatial relationship exists
● Solved by inferring the posterior

 

● Fault detection works by predicting the error 
term and seeing whether observation agrees
● Infer the predictive

Geographical proximity 
does not necessarily lead 
to spatial correlation, e.g., 
two nodes in two rooms

Sliding window history 
of N observations

Mean of the difference

So we're using observations to 
learn the (posterior probabilities 
of) the model  of what the 
observations should look like
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Bayesian Sequential Learning

● Learning = sequential model update

● Two cases depending on whether     is known
● Use learning to narrow the width of the distribution

By Bayes' theorem

By conditional independence 
derived from the model

Update

The model  given 
what's been 
observed up to (and 
including) now

The model given 
what's gone before 
(existing model)

Start from a sound prior 
with no observations, just 
reflecting the model's view 
of what will happen
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Why Bayesian learning?

● Formal statistical learning 
● Provides sound inference 

● Efficient and lightweight
● Constant space complexity
● Constant complexity update

● Robust
● Test incoming data against the predicted 

distribution
● Only then admit data for future learning

No need to store any learning data 
over a protracted period
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Learning as sequential update

Converging to the true signal

Fang and Dobson. Fault detection 
based on hierarchical physical 
models. ACM TOSN. In preparation 

Vague and diffusive prior, 
in the wrong place and 
with a large variance
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Learning the variance

Sound prior

Converging to the true signal

The curves are Student T 
distributions, with more space 
under the tails for outliers
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Model update

● Track the observations
● Spatial difference

is evolving

● Time-varying update for the mean
● Recent data is given higher weight

Evolving mean

Constant variance

Smoothing parameter  
between 0 and 1

Exponential smoothing, the 
sum of the weights is 1, leading 
to an unbiased estimator
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Protocol design

● Group spatial verification
● Don't return data consistent with the model
● It's adding no information

● Resilient to broken-down spatial correlation
● Pairwise correlations tend to change

● ...at a reasonable overhead in term of the extra 
comms and computation required
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Overhead analysis

● Theoretical

● Simulation
● 1% fault rate

● Expect around
2 messages to
verify each
observation

  
Expected # of verification 
msgs sent per data # of verifiers for a source node

Larger rates converge too, but 
possibly on different values
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Results – 1

● With injected faults

● Compared with others

With noisy learning data:
effect of robust learning

Low false positive rate

High true positive rate

Kamal et alia. Packet level attestation (PLA): a framework 
for in-network sensor data reliability. ACM TOSN. 2013. 

Heuristic; no model 
formation; not robust; 
doesn't evolve 
correlations
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Results – 2

● Against real signals

Original data

Cleaned data

From the Lausanne Urban 
Canopy Experiment (2006)

May be a true 
observation, but 
not verified by 
neighbours. Can't 
tell without 
ground truth, 
which of course 
we don't have
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Conclusions

● A more autonomic view of sensor networks
● Data is a distribution: accept it … and just learn it
● Scientists typically have the models already
● But we 're no longer collecting data per se

● Techniques aren't as hungry as we might think
● Comms, memory, and compute all acceptably low
● Get good fault rejection
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