

University of FOUNDED St Andrews 1413

When things get noisy

Programming in the presence of ubiquitous uncertainty

Lei Fang and Simon Dobson School of Computer Science, University of St Andrews UK

simon.dobson@st-andrews.ac.uk http://www.simondobson.org

Introduction

- Sensor-driven systems
 - The main (only?) input stream is garbled
 - The authors of one famous experiment (Great Duck Island, 2002) deemed 30—60% of sensor data faulty
- How do you program with this level of junk?
- Re-conceptualise sensors as evidence-providers rather than data- or value-providers
 - Use to confirm / refute model hypotheses
 - Learn the distributions being observed

Sensing should be easy, but...

In theory, there is no difference between theory and practice. But, in practice, there is.

Jan L.A. van de Snepscheut

Why are sensors so bad?

- An inherent uncertainty that can't be engineered out of a system
 - Physical degradation
 - Occlusion and fouling
 - Positional uncertainty
 - Interference, accidental or deliberate
- *Physical* issues that give rise to *faults* in the data
 - Change over time, need autonomic management

Fault types

- Noise in the environment and the electronics
- Point (or wider) spikes
- De-calibration (drift) in space and time

The taxonomy of fault detectors

- When the detection takes place ?
 - Off-line, during analysis
 - On-line, during capture
- Where the detection takes place ?
 - Server-side, at the sink or in the cloud
 - Front-end, in the network

The taxonomy of fault detectors

- When the detection takes place ?
 - Off-line, during analysis
 - On-line, during capture
- Where the detection takes place ?
 - Server-side, at the sink or in the cloud -
 - Front-end, in the network

This combination is most common

We claim this combination is better

- Scalable
 - Use the resources you have, more or less
- Flexible
 - Not every application sends data to the sink
 - Those that do can reduce overheads
- Robust
 - Alerts as they happen
- Tolerant

Scientific analysis based around a specific set of nodes is fragile in the face of node failure

• Dataset useful even if some nodes fail

Approach

- Hypothesise the intended data
 - *Non-stationary:* summary statistics change over time
- Sensor readings *confirm* or *refute* the hypothesis
 - Add *evidence* rather than providing *data*
 - Goal of the network is to *adapt the model* to reflect the conditions being observed on an on-going basis
 - Result is a *distribution* learned from the data
- Use model correlations to let nodes *verify* each others' readings

Spatial correlation – 1

• Neighbouring nodes observe the same trend

• Look at the differences between them to learn the ways in which the true signal is being convolved with noise

Spatial correlation – 2

- A spatial model
 - The synchronised differences are Gaussians

 $e_t \stackrel{iid}{\sim} \mathcal{N}(\delta_{ij}, \sigma_e^2), \qquad \qquad \{e_t = Y_{i,t} - Y_{j,t}, t \ge 0\}$

- Sometimes these can be derived from context
 - Sensor measurement variance may be known

$$\sigma_e^2 = \operatorname{Var}[e_t] = \operatorname{Var}[Y_i] + \operatorname{Var}[Y_j] = \sigma_i^2 + \sigma_j^2$$

Known hardware measurement error

• In general unknown, but can be learned

Two inference problems

- Verifier node selection
 - Whether a spatial relationship exists

• $\delta_{ij} | \mathcal{D}_N$

• Solved by inferring the *posterior*

Geographical proximity does not necessarily lead to spatial correlation, *e.g.*, two nodes in two rooms

Mean of the difference

 Sliding window history of N observations

- Fault detection works by predicting the error term and seeing whether observation agrees
 - Infer the *predictive*

 $e_{n+1}|\mathcal{D}_N$

So we're using *observations* to learn the (posterior probabilities of) the *model* of what the observations *should* look like

Bayesian Sequential Learning

• Learning = sequential model update

- Two cases depending on whether σ_e^2 is known
 - Use learning to narrow the width of the distribution

Why Bayesian learning?

- Formal statistical learning
 - Provides sound inference
- Efficient and lightweight
 - Constant space complexity
 - Constant complexity update
- Robust

No need to store any learning data over a protracted period

- Test incoming data against the predicted distribution
- Only then *admit* data for future learning

Learning as sequential update

Learning the variance

Model update

- Time-varying update for the mean
 - Recent data is given higher weight

$$\tilde{m}_n = \tilde{m}_{n-1} + \psi(e_n - \tilde{m}_{n-1})$$
Smoothing parameter
between 0 and 1

Exponential smoothing, the sum of the weights is 1, leading to an unbiased estimator

Protocol design

- Group spatial verification
 - Don't return data consistent with the model
 - It's adding no information
- Resilient to broken-down spatial correlation
 - Pairwise correlations tend to change

• ...at a reasonable overhead in term of the extra comms and computation required

Overhead analysis

• Theoretical

$$\mathbb{E}[N] = \frac{1 - p_A^n}{1 - p_A} P_f + \frac{1 - q_A^n}{1 - q_A} (1 - P_f).$$

- Simulation
 - 1% fault rate

Larger rates converge too, but possibly on different values

• Expect around 2 messages to verify each observation

Results – 1

				-	
		SHORT	CONST.	NOISE	DRIFT
CASE 1	Sensitivity	$1.0 (\pm 0.0)$	$1.0 \ (\pm 0.0)$	$0.958 (\pm 0.022)$	$1.0 (\pm 0.0)$
	Specificity	$1.0 (\pm 0.0)$	$1.0 \ (\pm 0.0)$	$0.999~(\pm 0.0)$	$1.0 \ (\pm 0.0)$
CASE 2	Sensitivity	$0.999~(\pm 0.001)$	$1.0 (\pm 0.001)$	$0.952 (\pm 0.011)$	$1.0 \ (\pm 0.0)$
	Specificity	$0.996~(\pm 0.005)$	$0.993 \ (\pm 0.011)$	$0.964~(\pm 0.045)$	$0.995~(\pm 0.009)$

Low false positive rate

• Compared with others

Kamal *et alia*. Packet level attestation (PLA): a framework for in-network sensor data reliability. ACM TOSN. 2013.

Results – 2

Conclusions

- A more autonomic view of sensor networks
 - Data is a distribution: accept it ... and just learn it
 - Scientists typically have the models already
 - But we 're no longer collecting data *per se*
- Techniques aren't as hungry as we might think
 - Comms, memory, and compute all acceptably low
 - Get good fault rejection

